

SYNC OVER PACKET FOR 5G ERA

Sergiy Bityukov Senior Marketing Manager

www.utstar.com

November, 2018

UTSTARCOM – A GLOBAL TELECOM INFRASTRUCTURE PROVIDER

- Founded in 1991, started trading on NASDAQ in 2000 (UTSI)
- Operating entities in Hong Kong; Tokyo, Japan; San Jose, USA; Delhi and Bangalore, India; Hangzhou, China
- Strong customer base, multiple deployments for tier 1 operators worldwide

Focus on delivering innovative cutting-edge, packet optical transport, synchronization, wireless and fixed broadband access products and solutions coupled with carrier grade Software Defined Networking (SDN) platform

5G SYNC REQUIREMENTS

3GPP TS 38.133 V15.3.0 (2018-10):				
Cell phase synchronization accuracy	3 µs → ±1.5µs		At antenna/	
3GPP TS 38.104 V15.3.0 (2018-10):	TAB port			port
Synchronization applications	TAE per BS Type			
	1-C (FR1)	1-H (FR1)	1-0 (FR1)	2-0 (FR2)
MIMO or TX diversity transmissions, at each carrier frequency	65 ns	65ns	65ns	65ns
Intra-band contiguous carrier aggregation	260ns	260ns	260ns	130ns
Intra-band non-contiguous carrier aggregation	3µs	3µs	3µs	3µs
Inter-band carrier aggregation	3µs	3µs	3µs	3µs

TBD:

Synchronization accuracy requirements for CoMP, positioning, supplementary uplink etc. - TDB

ITU-T Transport network support of IMT-2020/5G GSTR-TN5G (2018-02):

...studies are ongoing on the feasibility of solutions targeting end-to-end time synchronization requirements (absolute or relative) on the order of **+/- 100 ns to +/- 300 ns** to address specific applications or potential future requirements...

5G TRANSPORT SYNC REQUIREMENTS (Just an example)

5G TRANSPORT SYNC REQUIREMENTS

(Just an example)

eCPRI Transport Network V1.2 (2018-06-25):

SYNCHRONIZATION CHALLENGES

Provide required sync accuracy

- Heterogeneous networks, different performance of network devices, different technologies, complex to guarantee consistent sync performance
- The best performance is while using on-path sync support in every node (TC/BC) not always the case
- Provide it cost efficiently
- Guarantee high availability
- Meet different sync requirements from vertical applications
- Align with other trends in modern and emerging networks including 5G (network slicing, virtualization, XaaS etc.)

TIMING ARCHITECTURE

Traditional architecture for 3G/4G

BUILDING BLOCKS

Accurate internal **GNSS** feeding a Grand Master, Precise clock for reliable Accurate **Atomic PRC/PRS** holdover operation reference internal clock clock JURCE **Distributed** clustered timing architecture Accurate network-Precise network-PTP based frequency based frequency/ Sync Etherner synchronization phase/ time **IEEE 1588v2** synchronization

www.utstar.com ©2018 UTStarcom, Inc. All rights reserved.

< 9 (>

TIMING ARCHITECTURE

<

Clustered Distributed Timing Architecture

TIMING ARCHITECTURE

Clustered Distributed Timing Architecture – Some scenarios

- High cost efficiency
- Mass small cell deployment

GM FOR CLUSTERED DISTRIBUTED ARCH.

- High accuracy (TE) of GM at network edge <u>is important</u> to achieve the performance and spectrum efficiency of 5G network, i.e. TE per PRTC-B/ePRTC
- Extra high holdover performance (e.g. ePRTC level: ±100ns within 14-day period) normally <u>will not be</u> required at network edge:
 - 1. Clustered distributed architecture provides very high availability of accurate clock. Probability of holdover operation gets low.
 - 2. Sync accuracy better than ±1.5µs (e.g. 260ns) is required for certain scenarios and extended features (CA, etc.). So, if holdover mode can provide accuracy within ±1.5µs at BS antenna ports, it should be enough to ensure basic 5G network operation during holdover.
- Also: Cost efficiency, deployment flexibility, performance monitoring, management, etc.

Holdover: \pm 1.1us/24h

GM FOR CLUSTERED DISTRIBUTED ARCH.

GM FOR CLUSTERED DISTRIBUTED ARCH.

ADVANTAGES:

- Achieves higher timing accuracy with increased number of available satellites (compared to a GPS-only receiver)
- ✓ Improves success rate of timing locking
- Better stability and reliability in a complex electromagnetic environment
- Better protection against GNSS signal spoofing
- Reliable timing with limited sky view (down to 1 sat operation)
- ✓ Improved overall availability

Concurrent Multi-system GNSS Receiver

- E.g. GPS, GLONASS, BDS, Galileo, QZSS
- Supports several systems concurrently
- Multiple frequency bands concurrently
- Operates with as few as a single satellite

OUTDOOR DESIGN GRAND MASTER

- Resolves issues and limitations of RF cable
- ✓ Short RF cable, predictable performance, easy delay compensation
- $\checkmark\,$ Easier site acquisition with fiber IFL
- ✓ Great flexibility in deployment options
- Reduced risks of damaging indoor equipment due to a lightning strike thanks to fiber IFL
- Improved availability with geographically distributed main and redundant GM

IISTARCOM[®]

Local **OR** Remote (OR both for redundancy)

UTSTARCOM®

Thank you